
Core Physics Modeling and 
Simulation at the INL

Hans Gougar, Abderrafi 
Ougouag, Joshua Cogliati, Scott 

Lucas and friends

Advanced Simulations for Nuclear Fuel Cycles
Lawrence Livermore National Laboratory  
December 14-16, 2005



I.  HTR Core Physics 
Simulation – A. Ougouag, PI

• Pebble bed reactor fuel 
cycle analysis

• Pebble flow simulation
• Material-Neutronics Interface

• 3D deterministic transport 
with Attila™

• Burnup & Visualization 

II.  ATR Core Physics 
Simulation – H. Gougar, PI



The PBR Fuel Management Problem

• Fuel flows along streamlines 
(deterministic component)

• Stochastic component leads to 
uncertainty 

• Partially burned pebbles are 
recirculated until spent

• Long mean free path, high 
burnup, harder spectrum

LWR methods & 
codes cannot 
easily be applied



Pebble Bed Reactor Core Physics  -
Areas of Research and Development

Pebble 
dynamics

Transport 
corrections

Radiation 
Damage

Double 
Heterogeneity

Nodal Diffusion –
Depletion – Fuel mixing

Thermal-hydraulics
Cross section 
generation

PEBBED

Genetic algorithm
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Pebble Bed Core

Cross sections for TRISO-based Fuel
• 2 or 3 levels of heterogeneity
• Randomness in fuel lattice
• Low-energy resonances in minor 

actinides
• Uncertainty in burnup history
• Long mean free path



Pebble Flow Simulation
• Hard particle dynamics 

simulation of core loading and 
settling

• Variable packing fraction and 
pebble flow simulated but not 
validated for graphite

• Dynamics of pebble flow to 
drive time-dependent fuel 
loading analysis capability 
(Approach to Asymptotic)

• Experimental validation and 
determination of parameters 
are needed

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

-0.3 -0.2 -0.1  0  0.1  0.2  0.3

average velocity



Pebble 
Packing
and Settling
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Pebble Settling during a Seismic 
Event
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• Molecular dynamic simulation of radiation damage in 
graphite and SiC

• Calculation of scattering cross sections in damaged 
crystals

• Calculation of threshold energy and displacement kerma
cross sections at prototypical temperatures

• Modeling of damage to assess effects of annealing on 
transient behavior (thermal conductivity recovery – thermal 
scattering law changes)

Material-Neutronics Interface –
modeling radiation damage and its 
effects on core dynamics
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Kinetic Modeling of Irradiation 
Damage in Graphite



Effect upon Cross Sections
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Summary –
Advanced PBR Simulation
• PEBBED: Stochastic 

optimization, integrated core 
analysis

• Simulation of Pebble-bed 
Dynamics

• Radiation effects on Core 
Physics



3D Deterministic Transport Modeling of 
the Advanced Test Reactor

• Attila™ (Transpire, Inc. – G. 
Failla, T. Wareing, J. McGhee, A. 
Barnett, I. Davis)

• Burnup solver for cycle 
analysis

• Output visualization using 
VisIt (www.llnl.gov/visit/ )

• Complements our full-core 
MCNP-ORIGEN model

Objective - Demonstrate the feasibility of 
using a 3D deterministic transport/depletion 
code for whole core safety analysis



• <250 MWt reactor for testing 
fuels and materials

• Nine flux traps, five with 
independent cooling systems

• 40 U-Alx fuel elements (HEU) 
each with 19 Al-clad fuel plates

• Cylindrical control drums 
maintain constant axial flux 
profile throughout cycle

• Very high flux for accelerated 
test campaigns

• Cycle safety analysis centered 
upon legacy diffusion code

INL’s Advanced Test Reactor (ATR)
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ATR Fuel



• Use 3D transport for 
core safety analysis

• Need ease of use, high 
fidelity (robust and 
accurate mesher)

• Need depletion 
capability  (burnup 
solver developed and 
tested)

Project Objectives and Challenges 

19 plate 
fuel element

Hf control blade 
On Be drum



• Steady-state First 
Order Linear 
Boltzmann solver (Sn) 
with DSA

• Linear Discontinuous 
Galerkin FEM, 3rd order 
accurate

• FORNAX depletion 
solver – series 
expansion of the matrix 
exponential (effort 
funded by INL)

• SolidWorks CAD, 
Unstructured Meshing 
by Simmetrix

Attila™
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• Little or no symmetry

• Code, hardware, OS 
incompatibilities

• 3D Meshing of highly 
heterogeneous 
geometry – not trivial

• Depletion

• Control elements 
(rods and drums) 
modeled but positions 
are guessed

• Long running times on 
a single CPU

• Cross sections

Issues



• Godiva

• HEU Can

• ATR “Toy”

• Partial ATR Models

• Full ATR Core 

Some results
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Summary
•Attila with burnup solver is suitable for fuel 
cycle safety analysis – ease of use, 
compatibility, accuracy (benchmarking in 
progress)

•Current issues
- Cross sections:  Need to develop an appropriate and 
compatible scheme (collaboration with Studsvik
Scandpower)
-3D Meshing:  working out some wrinkles 
-Parallelization – need a speedup of 1-2 orders of 
magnitude for routine cycle analysis
-Intelligent control element positioning
-Couple to T-H/CFD


